These map()
, map2()
, imap()
, and pmap()
variants return data
frames by row-binding or column-binding the outputs together.
The functions were superseded in purrr 1.0.0 because their names
suggest they work like _lgl()
, _int()
, etc which require length
1 outputs, but actually they return results of any size because the results
are combined without any size checks. Additionally, they use
dplyr::bind_rows()
and dplyr::bind_cols()
which require dplyr to be
installed and have confusing semantics with edge cases. Superseded
functions will not go away, but will only receive critical bug fixes.
Instead, we recommend using map()
, map2()
, etc with list_rbind()
and
list_cbind()
. These use vctrs::vec_rbind()
and vctrs::vec_cbind()
under the hood, and have names that more clearly reflect their semantics.
Usage
map_dfr(.x, .f, ..., .id = NULL)
map_dfc(.x, .f, ...)
imap_dfr(.x, .f, ..., .id = NULL)
imap_dfc(.x, .f, ...)
map2_dfr(.x, .y, .f, ..., .id = NULL)
map2_dfc(.x, .y, .f, ...)
pmap_dfr(.l, .f, ..., .id = NULL)
pmap_dfc(.l, .f, ...)
Examples
# map ---------------------------------------------
# Was:
mtcars |>
split(mtcars$cyl) |>
map(\(df) lm(mpg ~ wt, data = df)) |>
map_dfr(\(mod) as.data.frame(t(as.matrix(coef(mod)))))
#> (Intercept) wt
#> 1 39.57120 -5.647025
#> 2 28.40884 -2.780106
#> 3 23.86803 -2.192438
# Now:
mtcars |>
split(mtcars$cyl) |>
map(\(df) lm(mpg ~ wt, data = df)) |>
map(\(mod) as.data.frame(t(as.matrix(coef(mod))))) |>
list_rbind()
#> (Intercept) wt
#> 1 39.57120 -5.647025
#> 2 28.40884 -2.780106
#> 3 23.86803 -2.192438
# for certain pathological inputs `map_dfr()` and `map_dfc()` actually
# both combine the list by column
df <- data.frame(
x = c(" 13", " 15 "),
y = c(" 34", " 67 ")
)
# Was:
map_dfr(df, trimws)
#> # A tibble: 2 × 2
#> x y
#> <chr> <chr>
#> 1 13 34
#> 2 15 67
map_dfc(df, trimws)
#> # A tibble: 2 × 2
#> x y
#> <chr> <chr>
#> 1 13 34
#> 2 15 67
# But list_rbind()/list_cbind() fail because they require data frame inputs
try(map(df, trimws) |> list_rbind())
#> Error in list_rbind(map(df, trimws)) :
#> Each element of `x` must be either a data frame or `NULL`.
#> ℹ Elements 1 and 2 are not.
# Instead, use modify() to apply a function to each column of a data frame
modify(df, trimws)
#> x y
#> 1 13 34
#> 2 15 67
# map2 ---------------------------------------------
ex_fun <- function(arg1, arg2){
col <- arg1 + arg2
x <- as.data.frame(col)
}
arg1 <- 1:4
arg2 <- 10:13
# was
map2_dfr(arg1, arg2, ex_fun)
#> col
#> 1 11
#> 2 13
#> 3 15
#> 4 17
# now
map2(arg1, arg2, ex_fun) |> list_rbind()
#> col
#> 1 11
#> 2 13
#> 3 15
#> 4 17
# was
map2_dfc(arg1, arg2, ex_fun)
#> New names:
#> • `col` -> `col...1`
#> • `col` -> `col...2`
#> • `col` -> `col...3`
#> • `col` -> `col...4`
#> col...1 col...2 col...3 col...4
#> 1 11 13 15 17
# now
map2(arg1, arg2, ex_fun) |> list_cbind()
#> New names:
#> • `col` -> `col...1`
#> • `col` -> `col...2`
#> • `col` -> `col...3`
#> • `col` -> `col...4`
#> col...1 col...2 col...3 col...4
#> 1 11 13 15 17