Unlike map()
and its variants which always return a fixed object
type (list for map()
, integer vector for map_int()
, etc), the
modify()
family always returns the same type as the input object.
modify()
is a shortcut forx[[i]] <- f(x[[i]]); return(x)
.modify_if()
only modifies the elements ofx
that satisfy a predicate and leaves the others unchanged.modify_at()
only modifies elements given by names or positions.modify2()
modifies the elements of.x
but also passes the elements of.y
to.f
, just likemap2()
.imodify()
passes the names or the indices to.f
likeimap()
does.modify_in()
modifies a single element in apluck()
location.
Usage
modify(.x, .f, ...)
modify_if(.x, .p, .f, ..., .else = NULL)
modify_at(.x, .at, .f, ...)
modify2(.x, .y, .f, ...)
imodify(.x, .f, ...)
Arguments
- .x
A vector.
- .f
A function specified in the same way as the corresponding map function.
- ...
Additional arguments passed on to the mapped function.
We now generally recommend against using
...
to pass additional (constant) arguments to.f
. Instead use a shorthand anonymous function:This makes it easier to understand which arguments belong to which function and will tend to yield better error messages.
- .p
A single predicate function, a formula describing such a predicate function, or a logical vector of the same length as
.x
. Alternatively, if the elements of.x
are themselves lists of objects, a string indicating the name of a logical element in the inner lists. Only those elements where.p
evaluates toTRUE
will be modified.- .else
A function applied to elements of
.x
for which.p
returnsFALSE
.- .at
A logical, integer, or character vector giving the elements to select. Alternatively, a function that takes a vector of names, and returns a logical, integer, or character vector of elements to select.
: if the tidyselect package is installed, you can use
vars()
and tidyselect helpers to select elements.- .y
A vector, usually the same length as
.x
.
Details
Since the transformation can alter the structure of the input; it's
your responsibility to ensure that the transformation produces a
valid output. For example, if you're modifying a data frame, .f
must preserve the length of the input.
Genericity
modify()
and variants are generic over classes that implement
length()
, [[
and [[<-
methods. If the default implementation
is not compatible for your class, you can override them with your
own methods.
If you implement your own modify()
method, make sure it satisfies
the following invariants:
These invariants are known as the functor laws in computer science.
Examples
# Convert factors to characters
iris |>
modify_if(is.factor, as.character) |>
str()
#> 'data.frame': 150 obs. of 5 variables:
#> $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#> $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#> $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
#> $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
#> $ Species : chr "setosa" "setosa" "setosa" "setosa" ...
# Specify which columns to map with a numeric vector of positions:
mtcars |> modify_at(c(1, 4, 5), as.character) |> str()
#> 'data.frame': 32 obs. of 11 variables:
#> $ mpg : chr "21" "21" "22.8" "21.4" ...
#> $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
#> $ disp: num 160 160 108 258 360 ...
#> $ hp : chr "110" "110" "93" "110" ...
#> $ drat: chr "3.9" "3.9" "3.85" "3.08" ...
#> $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
#> $ qsec: num 16.5 17 18.6 19.4 17 ...
#> $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
#> $ am : num 1 1 1 0 0 0 0 0 0 0 ...
#> $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
#> $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
# Or with a vector of names:
mtcars |> modify_at(c("cyl", "am"), as.character) |> str()
#> 'data.frame': 32 obs. of 11 variables:
#> $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
#> $ cyl : chr "6" "6" "4" "6" ...
#> $ disp: num 160 160 108 258 360 ...
#> $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
#> $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
#> $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
#> $ qsec: num 16.5 17 18.6 19.4 17 ...
#> $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
#> $ am : chr "1" "1" "1" "0" ...
#> $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
#> $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
list(x = sample(c(TRUE, FALSE), 100, replace = TRUE), y = 1:100) |>
list_transpose(simplify = FALSE) |>
modify_if("x", \(l) list(x = l$x, y = l$y * 100)) |>
list_transpose()
#> $x
#> [1] TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE
#> [12] TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE
#> [23] FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
#> [34] FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE
#> [45] TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
#> [56] TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
#> [67] FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE
#> [78] TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE
#> [89] TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE
#> [100] FALSE
#>
#> $y
#> [1] 100 200 300 4 500 6 700 8 900 1000 11 1200 1300
#> [14] 14 15 1600 17 1800 19 2000 21 22 23 2400 25 26
#> [27] 27 28 29 3000 31 32 33 34 3500 36 37 3800 39
#> [40] 4000 41 4200 4300 44 4500 4600 47 48 49 50 51 5200
#> [53] 5300 54 55 5600 57 58 5900 6000 6100 6200 6300 64 65
#> [66] 66 67 6800 69 7000 71 7200 7300 7400 75 76 7700 7800
#> [79] 79 80 8100 8200 83 84 8500 86 8700 8800 8900 9000 9100
#> [92] 92 93 9400 9500 9600 97 9800 9900 100
#>
# Use modify2() to map over two vectors and preserve the type of
# the first one:
x <- c(foo = 1L, bar = 2L)
y <- c(TRUE, FALSE)
modify2(x, y, \(x, cond) if (cond) x else 0L)
#> foo bar
#> 1 0
# Use a predicate function to decide whether to map a function:
modify_if(iris, is.factor, as.character)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5.0 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> 11 5.4 3.7 1.5 0.2 setosa
#> 12 4.8 3.4 1.6 0.2 setosa
#> 13 4.8 3.0 1.4 0.1 setosa
#> 14 4.3 3.0 1.1 0.1 setosa
#> 15 5.8 4.0 1.2 0.2 setosa
#> 16 5.7 4.4 1.5 0.4 setosa
#> 17 5.4 3.9 1.3 0.4 setosa
#> 18 5.1 3.5 1.4 0.3 setosa
#> 19 5.7 3.8 1.7 0.3 setosa
#> 20 5.1 3.8 1.5 0.3 setosa
#> 21 5.4 3.4 1.7 0.2 setosa
#> 22 5.1 3.7 1.5 0.4 setosa
#> 23 4.6 3.6 1.0 0.2 setosa
#> 24 5.1 3.3 1.7 0.5 setosa
#> 25 4.8 3.4 1.9 0.2 setosa
#> 26 5.0 3.0 1.6 0.2 setosa
#> 27 5.0 3.4 1.6 0.4 setosa
#> 28 5.2 3.5 1.5 0.2 setosa
#> 29 5.2 3.4 1.4 0.2 setosa
#> 30 4.7 3.2 1.6 0.2 setosa
#> 31 4.8 3.1 1.6 0.2 setosa
#> 32 5.4 3.4 1.5 0.4 setosa
#> 33 5.2 4.1 1.5 0.1 setosa
#> 34 5.5 4.2 1.4 0.2 setosa
#> 35 4.9 3.1 1.5 0.2 setosa
#> 36 5.0 3.2 1.2 0.2 setosa
#> 37 5.5 3.5 1.3 0.2 setosa
#> 38 4.9 3.6 1.4 0.1 setosa
#> 39 4.4 3.0 1.3 0.2 setosa
#> 40 5.1 3.4 1.5 0.2 setosa
#> 41 5.0 3.5 1.3 0.3 setosa
#> 42 4.5 2.3 1.3 0.3 setosa
#> 43 4.4 3.2 1.3 0.2 setosa
#> 44 5.0 3.5 1.6 0.6 setosa
#> 45 5.1 3.8 1.9 0.4 setosa
#> 46 4.8 3.0 1.4 0.3 setosa
#> 47 5.1 3.8 1.6 0.2 setosa
#> 48 4.6 3.2 1.4 0.2 setosa
#> 49 5.3 3.7 1.5 0.2 setosa
#> 50 5.0 3.3 1.4 0.2 setosa
#> 51 7.0 3.2 4.7 1.4 versicolor
#> 52 6.4 3.2 4.5 1.5 versicolor
#> 53 6.9 3.1 4.9 1.5 versicolor
#> 54 5.5 2.3 4.0 1.3 versicolor
#> 55 6.5 2.8 4.6 1.5 versicolor
#> 56 5.7 2.8 4.5 1.3 versicolor
#> 57 6.3 3.3 4.7 1.6 versicolor
#> 58 4.9 2.4 3.3 1.0 versicolor
#> 59 6.6 2.9 4.6 1.3 versicolor
#> 60 5.2 2.7 3.9 1.4 versicolor
#> 61 5.0 2.0 3.5 1.0 versicolor
#> 62 5.9 3.0 4.2 1.5 versicolor
#> 63 6.0 2.2 4.0 1.0 versicolor
#> 64 6.1 2.9 4.7 1.4 versicolor
#> 65 5.6 2.9 3.6 1.3 versicolor
#> 66 6.7 3.1 4.4 1.4 versicolor
#> 67 5.6 3.0 4.5 1.5 versicolor
#> 68 5.8 2.7 4.1 1.0 versicolor
#> 69 6.2 2.2 4.5 1.5 versicolor
#> 70 5.6 2.5 3.9 1.1 versicolor
#> 71 5.9 3.2 4.8 1.8 versicolor
#> 72 6.1 2.8 4.0 1.3 versicolor
#> 73 6.3 2.5 4.9 1.5 versicolor
#> 74 6.1 2.8 4.7 1.2 versicolor
#> 75 6.4 2.9 4.3 1.3 versicolor
#> 76 6.6 3.0 4.4 1.4 versicolor
#> 77 6.8 2.8 4.8 1.4 versicolor
#> 78 6.7 3.0 5.0 1.7 versicolor
#> 79 6.0 2.9 4.5 1.5 versicolor
#> 80 5.7 2.6 3.5 1.0 versicolor
#> 81 5.5 2.4 3.8 1.1 versicolor
#> 82 5.5 2.4 3.7 1.0 versicolor
#> 83 5.8 2.7 3.9 1.2 versicolor
#> 84 6.0 2.7 5.1 1.6 versicolor
#> 85 5.4 3.0 4.5 1.5 versicolor
#> 86 6.0 3.4 4.5 1.6 versicolor
#> 87 6.7 3.1 4.7 1.5 versicolor
#> 88 6.3 2.3 4.4 1.3 versicolor
#> 89 5.6 3.0 4.1 1.3 versicolor
#> 90 5.5 2.5 4.0 1.3 versicolor
#> 91 5.5 2.6 4.4 1.2 versicolor
#> 92 6.1 3.0 4.6 1.4 versicolor
#> 93 5.8 2.6 4.0 1.2 versicolor
#> 94 5.0 2.3 3.3 1.0 versicolor
#> 95 5.6 2.7 4.2 1.3 versicolor
#> 96 5.7 3.0 4.2 1.2 versicolor
#> 97 5.7 2.9 4.2 1.3 versicolor
#> 98 6.2 2.9 4.3 1.3 versicolor
#> 99 5.1 2.5 3.0 1.1 versicolor
#> 100 5.7 2.8 4.1 1.3 versicolor
#> 101 6.3 3.3 6.0 2.5 virginica
#> 102 5.8 2.7 5.1 1.9 virginica
#> 103 7.1 3.0 5.9 2.1 virginica
#> 104 6.3 2.9 5.6 1.8 virginica
#> 105 6.5 3.0 5.8 2.2 virginica
#> 106 7.6 3.0 6.6 2.1 virginica
#> 107 4.9 2.5 4.5 1.7 virginica
#> 108 7.3 2.9 6.3 1.8 virginica
#> 109 6.7 2.5 5.8 1.8 virginica
#> 110 7.2 3.6 6.1 2.5 virginica
#> 111 6.5 3.2 5.1 2.0 virginica
#> 112 6.4 2.7 5.3 1.9 virginica
#> 113 6.8 3.0 5.5 2.1 virginica
#> 114 5.7 2.5 5.0 2.0 virginica
#> 115 5.8 2.8 5.1 2.4 virginica
#> 116 6.4 3.2 5.3 2.3 virginica
#> 117 6.5 3.0 5.5 1.8 virginica
#> 118 7.7 3.8 6.7 2.2 virginica
#> 119 7.7 2.6 6.9 2.3 virginica
#> 120 6.0 2.2 5.0 1.5 virginica
#> 121 6.9 3.2 5.7 2.3 virginica
#> 122 5.6 2.8 4.9 2.0 virginica
#> 123 7.7 2.8 6.7 2.0 virginica
#> 124 6.3 2.7 4.9 1.8 virginica
#> 125 6.7 3.3 5.7 2.1 virginica
#> 126 7.2 3.2 6.0 1.8 virginica
#> 127 6.2 2.8 4.8 1.8 virginica
#> 128 6.1 3.0 4.9 1.8 virginica
#> 129 6.4 2.8 5.6 2.1 virginica
#> 130 7.2 3.0 5.8 1.6 virginica
#> 131 7.4 2.8 6.1 1.9 virginica
#> 132 7.9 3.8 6.4 2.0 virginica
#> 133 6.4 2.8 5.6 2.2 virginica
#> 134 6.3 2.8 5.1 1.5 virginica
#> 135 6.1 2.6 5.6 1.4 virginica
#> 136 7.7 3.0 6.1 2.3 virginica
#> 137 6.3 3.4 5.6 2.4 virginica
#> 138 6.4 3.1 5.5 1.8 virginica
#> 139 6.0 3.0 4.8 1.8 virginica
#> 140 6.9 3.1 5.4 2.1 virginica
#> 141 6.7 3.1 5.6 2.4 virginica
#> 142 6.9 3.1 5.1 2.3 virginica
#> 143 5.8 2.7 5.1 1.9 virginica
#> 144 6.8 3.2 5.9 2.3 virginica
#> 145 6.7 3.3 5.7 2.5 virginica
#> 146 6.7 3.0 5.2 2.3 virginica
#> 147 6.3 2.5 5.0 1.9 virginica
#> 148 6.5 3.0 5.2 2.0 virginica
#> 149 6.2 3.4 5.4 2.3 virginica
#> 150 5.9 3.0 5.1 1.8 virginica
# Specify an alternative with the `.else` argument:
modify_if(iris, is.factor, as.character, .else = as.integer)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5 3 1 0 setosa
#> 2 4 3 1 0 setosa
#> 3 4 3 1 0 setosa
#> 4 4 3 1 0 setosa
#> 5 5 3 1 0 setosa
#> 6 5 3 1 0 setosa
#> 7 4 3 1 0 setosa
#> 8 5 3 1 0 setosa
#> 9 4 2 1 0 setosa
#> 10 4 3 1 0 setosa
#> 11 5 3 1 0 setosa
#> 12 4 3 1 0 setosa
#> 13 4 3 1 0 setosa
#> 14 4 3 1 0 setosa
#> 15 5 4 1 0 setosa
#> 16 5 4 1 0 setosa
#> 17 5 3 1 0 setosa
#> 18 5 3 1 0 setosa
#> 19 5 3 1 0 setosa
#> 20 5 3 1 0 setosa
#> 21 5 3 1 0 setosa
#> 22 5 3 1 0 setosa
#> 23 4 3 1 0 setosa
#> 24 5 3 1 0 setosa
#> 25 4 3 1 0 setosa
#> 26 5 3 1 0 setosa
#> 27 5 3 1 0 setosa
#> 28 5 3 1 0 setosa
#> 29 5 3 1 0 setosa
#> 30 4 3 1 0 setosa
#> 31 4 3 1 0 setosa
#> 32 5 3 1 0 setosa
#> 33 5 4 1 0 setosa
#> 34 5 4 1 0 setosa
#> 35 4 3 1 0 setosa
#> 36 5 3 1 0 setosa
#> 37 5 3 1 0 setosa
#> 38 4 3 1 0 setosa
#> 39 4 3 1 0 setosa
#> 40 5 3 1 0 setosa
#> 41 5 3 1 0 setosa
#> 42 4 2 1 0 setosa
#> 43 4 3 1 0 setosa
#> 44 5 3 1 0 setosa
#> 45 5 3 1 0 setosa
#> 46 4 3 1 0 setosa
#> 47 5 3 1 0 setosa
#> 48 4 3 1 0 setosa
#> 49 5 3 1 0 setosa
#> 50 5 3 1 0 setosa
#> 51 7 3 4 1 versicolor
#> 52 6 3 4 1 versicolor
#> 53 6 3 4 1 versicolor
#> 54 5 2 4 1 versicolor
#> 55 6 2 4 1 versicolor
#> 56 5 2 4 1 versicolor
#> 57 6 3 4 1 versicolor
#> 58 4 2 3 1 versicolor
#> 59 6 2 4 1 versicolor
#> 60 5 2 3 1 versicolor
#> 61 5 2 3 1 versicolor
#> 62 5 3 4 1 versicolor
#> 63 6 2 4 1 versicolor
#> 64 6 2 4 1 versicolor
#> 65 5 2 3 1 versicolor
#> 66 6 3 4 1 versicolor
#> 67 5 3 4 1 versicolor
#> 68 5 2 4 1 versicolor
#> 69 6 2 4 1 versicolor
#> 70 5 2 3 1 versicolor
#> 71 5 3 4 1 versicolor
#> 72 6 2 4 1 versicolor
#> 73 6 2 4 1 versicolor
#> 74 6 2 4 1 versicolor
#> 75 6 2 4 1 versicolor
#> 76 6 3 4 1 versicolor
#> 77 6 2 4 1 versicolor
#> 78 6 3 5 1 versicolor
#> 79 6 2 4 1 versicolor
#> 80 5 2 3 1 versicolor
#> 81 5 2 3 1 versicolor
#> 82 5 2 3 1 versicolor
#> 83 5 2 3 1 versicolor
#> 84 6 2 5 1 versicolor
#> 85 5 3 4 1 versicolor
#> 86 6 3 4 1 versicolor
#> 87 6 3 4 1 versicolor
#> 88 6 2 4 1 versicolor
#> 89 5 3 4 1 versicolor
#> 90 5 2 4 1 versicolor
#> 91 5 2 4 1 versicolor
#> 92 6 3 4 1 versicolor
#> 93 5 2 4 1 versicolor
#> 94 5 2 3 1 versicolor
#> 95 5 2 4 1 versicolor
#> 96 5 3 4 1 versicolor
#> 97 5 2 4 1 versicolor
#> 98 6 2 4 1 versicolor
#> 99 5 2 3 1 versicolor
#> 100 5 2 4 1 versicolor
#> 101 6 3 6 2 virginica
#> 102 5 2 5 1 virginica
#> 103 7 3 5 2 virginica
#> 104 6 2 5 1 virginica
#> 105 6 3 5 2 virginica
#> 106 7 3 6 2 virginica
#> 107 4 2 4 1 virginica
#> 108 7 2 6 1 virginica
#> 109 6 2 5 1 virginica
#> 110 7 3 6 2 virginica
#> 111 6 3 5 2 virginica
#> 112 6 2 5 1 virginica
#> 113 6 3 5 2 virginica
#> 114 5 2 5 2 virginica
#> 115 5 2 5 2 virginica
#> 116 6 3 5 2 virginica
#> 117 6 3 5 1 virginica
#> 118 7 3 6 2 virginica
#> 119 7 2 6 2 virginica
#> 120 6 2 5 1 virginica
#> 121 6 3 5 2 virginica
#> 122 5 2 4 2 virginica
#> 123 7 2 6 2 virginica
#> 124 6 2 4 1 virginica
#> 125 6 3 5 2 virginica
#> 126 7 3 6 1 virginica
#> 127 6 2 4 1 virginica
#> 128 6 3 4 1 virginica
#> 129 6 2 5 2 virginica
#> 130 7 3 5 1 virginica
#> 131 7 2 6 1 virginica
#> 132 7 3 6 2 virginica
#> 133 6 2 5 2 virginica
#> 134 6 2 5 1 virginica
#> 135 6 2 5 1 virginica
#> 136 7 3 6 2 virginica
#> 137 6 3 5 2 virginica
#> 138 6 3 5 1 virginica
#> 139 6 3 4 1 virginica
#> 140 6 3 5 2 virginica
#> 141 6 3 5 2 virginica
#> 142 6 3 5 2 virginica
#> 143 5 2 5 1 virginica
#> 144 6 3 5 2 virginica
#> 145 6 3 5 2 virginica
#> 146 6 3 5 2 virginica
#> 147 6 2 5 1 virginica
#> 148 6 3 5 2 virginica
#> 149 6 3 5 2 virginica
#> 150 5 3 5 1 virginica